Enantioselective Total Synthesis of the Marine Toxin (–)-Gymnodimine Employing a Barbier-Type Macrocyclization

Angew. Chem. Int. Ed. 2009, 48, 1–5

Current Literature Presentation 12SEP2009 Michael Yang

Gymnodimine Background

- Isolated from dinoflagelate Karenia selliformis
- Sensitize neurons to the effects of Okadaic acid
- Binds to muscle nicotinic acetylcholine receptors
- Causes neurotoxic shellfish poisoning
- Spiroimine toxins: gymnodimine analogues B and C, pinnatoxins, spirolides, pteriatoxins, prorocentrolide,

HО

Gymnodimine B: $R_1 = H$, $R_2 = OH$ Gymnodimine C: $R_1 = OH$, $R_2 = H$

Spiro-prorocentrimine (1)

Michael Yang @ Wipf Group

Formation of Spirocyclic Imines - The Diels-Alder Strategy - Kishi

McCauley, J. A.; Nagasawa, N.; Lander, P. A.; Mischke, S. G.; Semones, M. A.; Kishi, Y. *J. Am. Chem. Soc.* **1998**, *120*, 7647-7648. Johannes, J. W.; Wenglowsky, S.; Kishi, Y. *Org. Lett.* **2005**, 3997-4000.

Synthesis of Diels Alder Precursor – Kishi

Johannes, J. W.; Wenglowsky, S.; Kishi, Y. Org. Lett. 2005, 3997-4000.

Gymnodimine – Diels Alder Strategy – Kishi

Johannes, J. W.; Wenglowsky, S.; Kishi, Y. Org. Lett. 2005, 3997-4000.

Murai THP and DA precursor

Retrosynthesis?

Ishihara, J.; Miyakawa, J.; Tsujimoto, T.; Murai, A. *Synlett.* **1997**, 1417-1419. Ishihara, J.; Horie, M.; Tsujimoto, T.; Murai, A. *Synlett.* **2002**, 399-402.

Murai

Ishihara, J.; Horie, M.; Tsujimoto, T.; Murai, A. Synlett. 2002, 399-402.

THF fragment - Iodoetherification - White

White, J. D.; Wang, G.; Quaranta, L. Org. Lett. 2003, 4109-4112.

Diels Alder - White

White, J. D.; Wang, G.; Quaranta, L. Org. Lett. 2003, 4983-4986.

Retrosynthetic Analysis – Romo

Yang, J.; Cohn, S. T.; Romo, D. Org. Lett. 2000, 2, 763-766.

Kong K.; Moussa, Z.; Romo, D. Org. Lett. 2005, 7, 5127-5130.

NHK reaction and Barbier Macrocyclization - Romo

Vinylogous Mukaiyama Aldol – Romo

Romo

3:1 d.r.

Synthesis of THF Fragment via Anionic Condensation, Fragmentation and Elimination – Rainier

	Entry Ketone R			R ¹	R^3	Furan	Yield	E:Z
1) NaH, DMF; EtO_2C H O R CO_2Et 2) R ₃ CHO R	1	4	OCH_3	CH_3	Ph	5	83%	0:1
$\begin{array}{ccc} \begin{array}{c} 3 \end{array} & \begin{array}{c} 3 \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \end{array} & \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{c} \end{array} & \end{array} \\ \end{array} & \begin{array}{c} \end{array} & \end{array} $	2	4	OCH_3	CH_3	<i>i</i> ∙Pr	6	78%	0:1
$R_1 CO_2 Et$	3	7	Н	н	Ph	8	56%	3:1
↓ Í .	4	7	Н	Н	i∕Pr	9	45%	1:2
$\begin{bmatrix} 0 & R_3 & & & & H \\ 0 & R_2 & & & & 0 \\ \hline & & & & & & 0 \\ R_1 & & & & & & 0 \\ R_1 & & & & & & R_1 \\ 0 & & & & & & R_1 \\ 0 & & & & & & 0 \\ 0 & & & & & & R_1 \\ 0 & & & & & & 0 \\ 0 & & & & & & & 0 \\ 0 & & & &$								

Rainier, J. D.; Xu, Q. Org. Lett. 1999, 27-29.

Summary